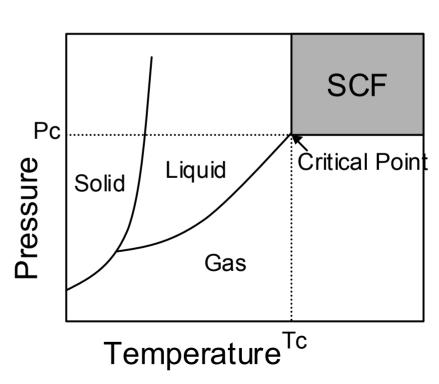


Economic Feasibility Study on the Supercritical Fluid Extraction of Edible Oils


Michael Gifford, Elizabeth Biancani, William Kearsley, Walter Maluchnik, Stephanie Farrell, Mariano J. Savelski, and Robert P. Hesketh

Supercritical carbon dioxide extraction is currently used in several food and pharmaceutical manufacturing applications. Its "greener" nature makes it a desirable option when compared with traditional organic solvent extractions. The purpose of this work is to compare the cost of using supercritical CO_2 to commercially extract peanut oil with that of the traditional hexane extraction process. Solubility values of peanut oil in supercritical CO_2 were also obtained under different conditions of temperature and pressure.

Supercritical Fluids

- Critical Temperature and Pressure
- Properties
 - Density of a liquid
 - Viscosity of a gas
 - Low surface tension
 - Adjustable density

Supercritical Fluids in Industry

Reactions

- SC Water Oxidation
- Catalysis

Pharmaceuticals

- Particle Formulation
- Drug Delivery

Extraction

- Petroleum
- Coffee Decaffeination
- Essential Oils

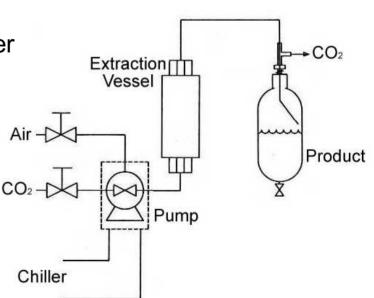
http://www.expsep.co.uk/

Carbon Dioxide Extraction

• Why CO₂?

- "Greener" alternative to organic solvents
 - Non-toxic
 - Nonflammable
 - Relatively Inert
 - No detectable residue
- Nonpolar solvent
- Low critical conditions
 - Tc = 31.1°C
 - Pc = 72.8 atm
- Low cost

Rowan Environmental Engineering Department



Rowan University

COLLEGE OF ENGINEERING

Experimental Apparatus

- Supercritical Fluid Technologies SFT-150
 - LED Temperature display/controller
 - Precision: ± 0.5°C
 - Max Vessel Temperature: 300°C
 - Max Operating Pressure: 680atm
 - Max Flowrate: 250g/min CO₂
 - Rupture disc safeguard
 - External Collection Vessel
 - Hand-tight vessel seals

Materials

Peanuts

- Extra large, raw, unsalted
- Supplied by Natural Health, Clementon, NJ

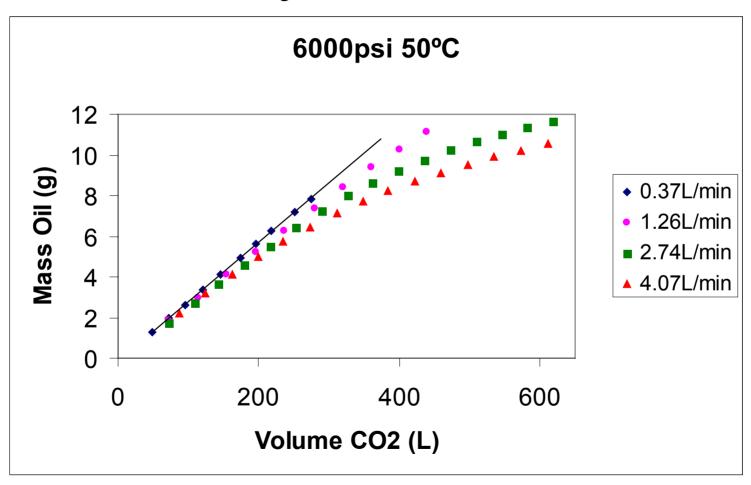
Carbon Dioxide

- Bone dry liquid with educator tube
- 99.8% purity
- Supplied by Messer Gas Technologies & Service Group

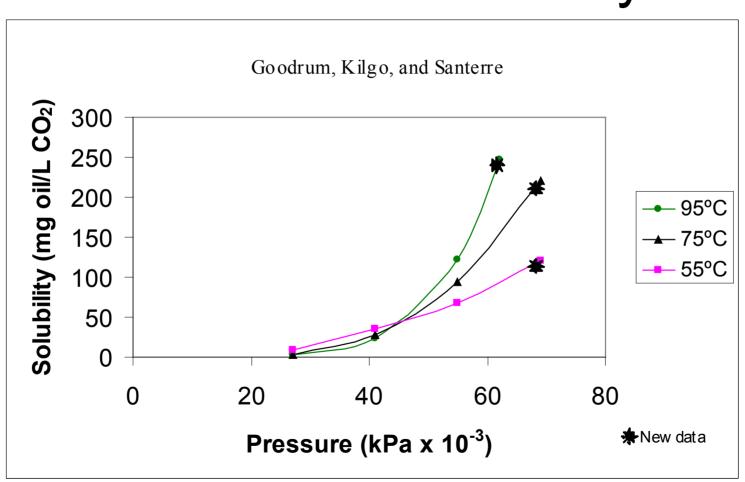
Procedure

Setup

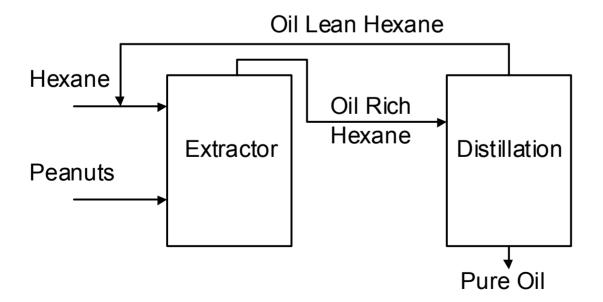
- Sample chopped in food processor for 1min ± 0.1s
- Loaded and packed into vessel
 - Glass wool used to prevent entrainment
- Temperature and pressure set
- CO₂ flow initiated


Sampling

- Sample weighed at volume increments
- Gas volume recorded

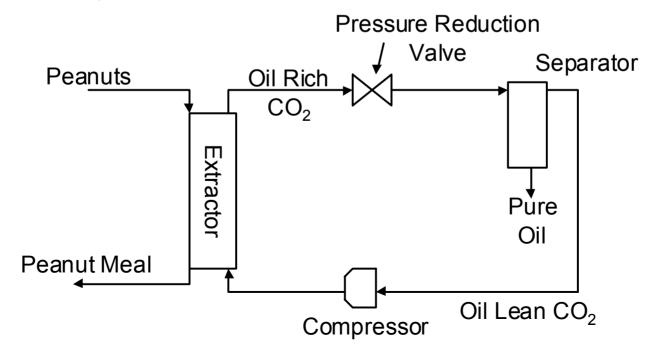


Solubility Determination



Peanut Oil Solubility

Hexane


- Major Process Costs
 - Materials (Peanuts, Hexane)
 - Distillation

Supercritical

- Major Process Costs
 - Materials (CO₂, Peanuts)
 - Compression

Results

- CO₂
 - -0.07\$/lb
 - Max Solubility
 - 38 mg/g
 - CO₂ Flow
 - 87 million lb/yr
 - Energy input
 - 1.8 GWh/yr
 - Operating Cost
 - 6.2 million \$/yr

- Hexane
 - -0.07\$/lb
 - Max Solubility
 - 80mg/g
 - Hexane Flow
 - 38 million lb/yr
 - Energy input
 - 4.6 GWh/yr
 - Operating Cost
 - 14 million \$/yr

Cost Comparison Hexane vs. CO₂

- Conditions
 - Peanut feed = 10 million lb/yr
 - Yeild = 30% (3 million lb/yr oil)
 - Supercritical extraction conditions
 - P = 550bar
 - $T = 55^{\circ}C$
 - For separation, P = 270bar
- Use mass and energy balances with solubility data to determine the more energy efficient process

Conclusion

- SCFE Advantageous for Oil Extraction
 - Economical, uses half the energy of distillation
 - More environmentally friendly than hexane
 - Improved plant safety
 - One-step process

Future Plans

- Further Economic Studies
 - More detailed, broader analysis
 - Compare product qualities
- Improve Solubility Data
- Explore Other Oilseeds
- Develop Undergraduate Experiment